[]{.cart-text} {.btn .cart .open-checkout} []{.btn-text-span .d-none .d-sm-inline-block .d-lg-none .d-hg-inline-block}{.btn .btn-secondary .checkout .open-checkout}
{.home} / UML{.type} / Modeling for System Integration{.type}
Transformation of UML Messages into Various Standard Formats {#transformation-of-uml-messages-into-various-standard-formats .title}
All standard formats for data exchange, whether ebXML, SWIFT, or UN/EDIFACT, have their own way of structuring and representing messages. SWIFT messages are described not only graphically, but also with text. The same is true for UN/EDIFACT, where the graphic illustrations are standardized through the use of branching diagrams.
The trend is clearly going into the direction of modeling messages in a fundamentally protocol and implementation neutral way, with UML.
Then all the standard formats can be derived from the representation in UML, the “mother of all messages”. Depending on availability this can even be done according to firmly defined transformation rules. (The profile UML Profile for Enterprise Distributed Object Computing was developed as guidelines for the translation of UML descriptions into ‘real’ business systems. This profile, in turn, is based upon standards of ebXML.) Some of the arguments for choosing UML as a neutral form of representation are:
- System-and implementation-independent description of business objects and messages
- Accepted and widely used standard
- Option of depicting messages and business processes
- Unified language for the description of systems
An essential advantage of neutral message specification in UML is the much easier conversion of messages from one format to another. Because of this, we recommend the modeling of messages in UML first, and subsequently transforming messages into the appropriate format. Here, it is not important whether the target format is a standard format or an in-house proprietary format. Especially in the later case, it is much easier to convert a project from a proprietary format to a standard one if neutral UML specifications are available.
A detailed description of transformation rules would go well beyond the scope of this text. Because of this, we would like to refer to OMG’s Model Driven Architecture (MDA) and the two profiles UML Profile for Enterprise Distributed Object Computing and UML Profile for Enterprise Application Integration, which provide comprehensive insight into this subject matter from a UML perspective.
Return
[]{.fa .fa-arrow-left} Transforming Data from the IT System to the Message “passenger list”{.btn .btn-default rel=“prev”}
Computer Science Distilled{.btn .btn-landing-ref .btn-hg .btn-block .btn-secondary style=“font-size: 16px; position: relative”}
Do you remember anything at all from your computer science class? Quicksort, Graph traversal, Big’O and other stuff? Revise your memories with our new book on Computer Science.
Psst! Did I mention that we’re offering sexy discounts right now?
{width=“250” height=“312” srcset=“/images/content-public/logos/logo-2x.png?id=fee3b4b0a14ba60dc0fe368695d78be9 2x”}{.menu-brand}
- Premium Stuff
- Design Patterns
- AntiPatterns
- Refactoring
- Code Smells
- Refactoring techniques
- Composing Methods
- Moving Features between Objects
- Organizing Data
- Self Encapsulate Field
- Replace Data Value with Object
- Change Value to Reference
- Change Reference to Value
- Replace Array with Object
- Duplicate Observed Data
- Change Unidirectional Association to Bidirectional
- Change Bidirectional Association to Unidirectional
- Replace Magic Number with Symbolic Constant
- Encapsulate Field
- Encapsulate Collection
- Replace Type Code with Class
- Replace Type Code with Subclasses
- Strategy
- Replace Subclass with Fields
- Simplifying Conditional Expressions
- Simplifying Method
Calls
- Rename Method
- Add Parameter
- Remove Parameter
- Separate Query from Modifier
- Parameterize Method
- Replace Parameter with Explicit Methods
- Preserve Whole Object
- Replace Parameter with Method Call
- Introduce Parameter Object
- Remove Setting Method
- Hide Method
- Replace Constructor with Factory Method
- Replace Error Code with Exception
- Replace Exception with Test
- Dealing with Generalisation
- UML
- Introduction
- Basic Principles and Background
- Modeling Business Systems
- Business Processes and Business Systems
- One Model---Two Views
- External View
- The Elements of a View
- Use Case Diagrams
- Constructing Use Case Diagrams
- Activity Diagrams
- Constructing Activity Diagrams
- Sequence Diagrams
- Constructing Sequence Diagrams
- High-Level Sequence Diagrams
- Sequence Diagrams for Scenarios of Business Use Cases
- Internal View
- Package Diagram
- Constructing Package Diagrams
- Class Diagram
- Constructing Class Diagrams
- Activity Diagram
- Modeling IT Systems
- External View
- The User View or “I don’t care how it works, as long as it works.”
- The Elements of a View
- Use Case Diagram
- Query Events and Mutation Events
- Use Case Sequence Diagram
- Constructing the External View
- Structural View
- Objects and Classes
- Generalization, Specialization, and Inheritance
- Static and Dynamic Business Rules
- Elements of the View
- Class Diagram
- Constructing Class Diagrams
- The Behavioral View
- The Life of an Object
- The Elements of the View
- Statechart Diagram
- Constructing Statechart Diagrams
- Interaction View
- Seeing What Happens Inside the IT System
- Elements of the View
- Communication Diagram
- Sequence Diagram
- Constructing Communication Diagrams
- Constructing Sequence Diagrams
- Modeling for System
Integration
- Terminology of System Integration
- Messages in UML
- One Model---Two Views
- Process View
- The Business System Model as Foundation
- Elements of the View
- Activity Diagrams
- Sequence Diagram
- Constructing Diagrams in the Process View
- The Static View
- Elements of the View
- Class Diagram
- Constructing Class Diagrams
- Transforming Data from the IT System to the Message “passenger list”
- Transformation of UML Messages into Various Standard Formats
Log in Contact us{.userecho-public rel=“nofollow”}
{srcset=“/images/content-public/logos/logo-min-xs-2x.png?id=34fc05750336c33b7815e231a0f227df 2x”}{.navigation-brand}
Shop Now!{.btn .btn-md .btn-primary .btn-featured}
-
[Contact us]{.caption .d-none .d-xl-inline-block}{.userecho-private rel=“nofollow”}
-
Forum{.userecho-public rel=“nofollow”}
-
Contact us{.userecho-private rel=“nofollow”}
© 2007-2023 SourceMaking.com[ / ]{.d-none .d-md-inline}
All rights reserved.
[]{.cart-text} {.btn .cart .open-checkout} []{.btn-text-span .d-none .d-sm-inline-block .d-lg-none .d-hg-inline-block}{.btn .btn-secondary .checkout .open-checkout}
{.home} / UML{.type} / Modeling for System Integration{.type}
Transformation of UML Messages into Various Standard Formats {#transformation-of-uml-messages-into-various-standard-formats-1 .title}
All standard formats for data exchange, whether ebXML, SWIFT, or UN/EDIFACT, have their own way of structuring and representing messages. SWIFT messages are described not only graphically, but also with text. The same is true for UN/EDIFACT, where the graphic illustrations are standardized through the use of branching diagrams.
The trend is clearly going into the direction of modeling messages in a fundamentally protocol and implementation neutral way, with UML.
Then all the standard formats can be derived from the representation in UML, the “mother of all messages”. Depending on availability this can even be done according to firmly defined transformation rules. (The profile UML Profile for Enterprise Distributed Object Computing was developed as guidelines for the translation of UML descriptions into ‘real’ business systems. This profile, in turn, is based upon standards of ebXML.) Some of the arguments for choosing UML as a neutral form of representation are:
- System-and implementation-independent description of business objects and messages
- Accepted and widely used standard
- Option of depicting messages and business processes
- Unified language for the description of systems
An essential advantage of neutral message specification in UML is the much easier conversion of messages from one format to another. Because of this, we recommend the modeling of messages in UML first, and subsequently transforming messages into the appropriate format. Here, it is not important whether the target format is a standard format or an in-house proprietary format. Especially in the later case, it is much easier to convert a project from a proprietary format to a standard one if neutral UML specifications are available.
A detailed description of transformation rules would go well beyond the scope of this text. Because of this, we would like to refer to OMG’s Model Driven Architecture (MDA) and the two profiles UML Profile for Enterprise Distributed Object Computing and UML Profile for Enterprise Application Integration, which provide comprehensive insight into this subject matter from a UML perspective.
Return
[]{.fa .fa-arrow-left} Transforming Data from the IT System to the Message “passenger list”{.btn .btn-default rel=“prev”}
Computer Science Distilled{.btn .btn-landing-ref .btn-hg .btn-block .btn-secondary style=“font-size: 16px; position: relative”}
Do you remember anything at all from your computer science class? Quicksort, Graph traversal, Big’O and other stuff? Revise your memories with our new book on Computer Science.
Psst! Did I mention that we’re offering sexy discounts right now?
{width=“250” height=“312” srcset=“/images/content-public/logos/logo-2x.png?id=fee3b4b0a14ba60dc0fe368695d78be9 2x”}{.menu-brand}
- Premium Stuff
- Design Patterns
- AntiPatterns
- Refactoring
- Code Smells
- Refactoring techniques
- Composing Methods
- Moving Features between Objects
- Organizing Data
- Self Encapsulate Field
- Replace Data Value with Object
- Change Value to Reference
- Change Reference to Value
- Replace Array with Object
- Duplicate Observed Data
- Change Unidirectional Association to Bidirectional
- Change Bidirectional Association to Unidirectional
- Replace Magic Number with Symbolic Constant
- Encapsulate Field
- Encapsulate Collection
- Replace Type Code with Class
- Replace Type Code with Subclasses
- Strategy
- Replace Subclass with Fields
- Simplifying Conditional Expressions
- Simplifying Method
Calls
- Rename Method
- Add Parameter
- Remove Parameter
- Separate Query from Modifier
- Parameterize Method
- Replace Parameter with Explicit Methods
- Preserve Whole Object
- Replace Parameter with Method Call
- Introduce Parameter Object
- Remove Setting Method
- Hide Method
- Replace Constructor with Factory Method
- Replace Error Code with Exception
- Replace Exception with Test
- Dealing with Generalisation
- UML
- Introduction
- Basic Principles and Background
- Modeling Business Systems
- Business Processes and Business Systems
- One Model---Two Views
- External View
- The Elements of a View
- Use Case Diagrams
- Constructing Use Case Diagrams
- Activity Diagrams
- Constructing Activity Diagrams
- Sequence Diagrams
- Constructing Sequence Diagrams
- High-Level Sequence Diagrams
- Sequence Diagrams for Scenarios of Business Use Cases
- Internal View
- Package Diagram
- Constructing Package Diagrams
- Class Diagram
- Constructing Class Diagrams
- Activity Diagram
- Modeling IT Systems
- External View
- The User View or “I don’t care how it works, as long as it works.”
- The Elements of a View
- Use Case Diagram
- Query Events and Mutation Events
- Use Case Sequence Diagram
- Constructing the External View
- Structural View
- Objects and Classes
- Generalization, Specialization, and Inheritance
- Static and Dynamic Business Rules
- Elements of the View
- Class Diagram
- Constructing Class Diagrams
- The Behavioral View
- The Life of an Object
- The Elements of the View
- Statechart Diagram
- Constructing Statechart Diagrams
- Interaction View
- Seeing What Happens Inside the IT System
- Elements of the View
- Communication Diagram
- Sequence Diagram
- Constructing Communication Diagrams
- Constructing Sequence Diagrams
- Modeling for System
Integration
- Terminology of System Integration
- Messages in UML
- One Model---Two Views
- Process View
- The Business System Model as Foundation
- Elements of the View
- Activity Diagrams
- Sequence Diagram
- Constructing Diagrams in the Process View
- The Static View
- Elements of the View
- Class Diagram
- Constructing Class Diagrams
- Transforming Data from the IT System to the Message “passenger list”
- Transformation of UML Messages into Various Standard Formats
Log in Contact us{.userecho-public rel=“nofollow”}
{srcset=“/images/content-public/logos/logo-min-xs-2x.png?id=34fc05750336c33b7815e231a0f227df 2x”}{.navigation-brand}
Shop Now!{.btn .btn-md .btn-primary .btn-featured}
-
[Contact us]{.caption .d-none .d-xl-inline-block}{.userecho-private rel=“nofollow”}
-
Forum{.userecho-public rel=“nofollow”}
-
Contact us{.userecho-private rel=“nofollow”}
© 2007-2023 SourceMaking.com[ / ]{.d-none .d-md-inline}
All rights reserved.